

CEC

角度调制与解调 I

Angle(Frequency/Phase) Modulation & Demodulation I

2024年6月7日

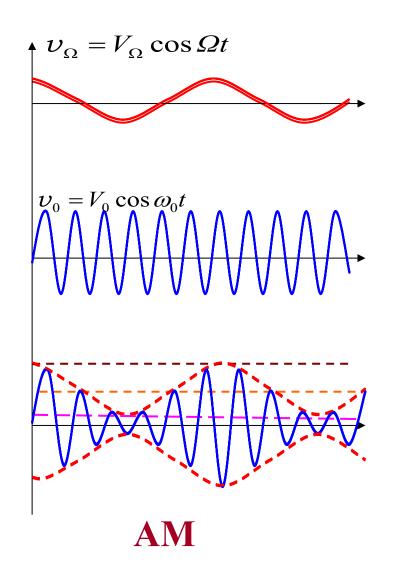
Chapter 8 角度调制与解调

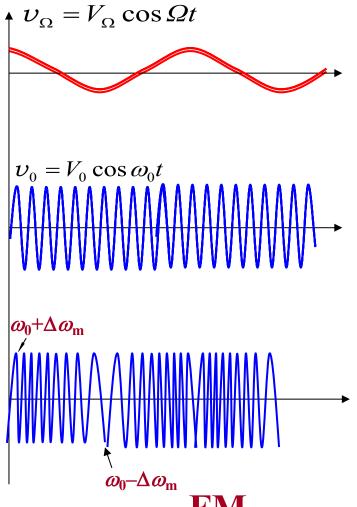
- ☞ §8.1 概述
- ☞ §8.2 调角波的性质
- **☞ §8.3 调频方法概述**
- ☞ §8.4 变容二极管调频
- ☞ §8.5 晶体振荡器直接调频
- ☞ §8.6 间接调频:由调相实现调频
- **№ §8.7 可变延时调频**
- **☞ §8.8 相位鉴频器**
- **☞ §8.9 比例鉴频器**
- ☞ §8.10 其他形式的鉴频器

▶1. 角度调制的概念

- 频率调制又称调频(FM)——模拟信号调制,使高频振荡信号的频率按调制信号的规律变化(瞬时频率变化的大小与调制信号成线性关系),而振幅保持恒定的一种调制方式。调频信号的解调称为鉴频或频率检波。
- -相位调制又称调相(PM) ——模拟信号调制,使高频振荡信号的相位按调制信号的规律变化,振幅保持不变。调相信号的解调称为鉴相或相位检波。
- -数字信号频率调制称为频率键控 (FSK), 数字信号相位调制称为相位键控 (PSK) (通信原理课程讲解)

▶2. 角度调制的波形





▶3. 角度调制的特点

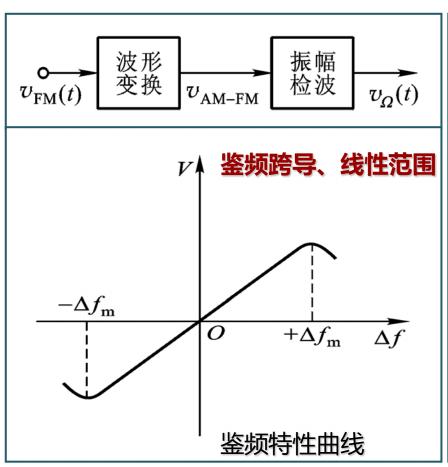
- 调频波和调相波都表现为高频载波瞬时相位随调制信号的变化 而变化,只是变化的规律不同而已。
- 频率与相位间存在微分与积分的关系,调频必调相,调相必调频。
- 鉴频和鉴相也可相互利用,可用鉴频的方法实现鉴相,也可用 鉴相的方法实现鉴频。
- 模拟通信中调频比调相应用广泛,数字通信中调相比调频应用普遍。

>4. 调幅与调频的比较和调频指标

- 频谱宽度、寄生调幅、抗干扰能力

		载波信号 的受控参量	解调方式	解调方式 的差别	特点	用途
幅度调制	MA計画	振幅	相干解调或非相干解调	频谱线性搬 移频谱结构 无变化	频带窄 频带利 用率高	
角度调制	调频FM	频率	鉴频或 频率检波	频谱非线 性 频谱结构 发	频带宽 频带利 用不经 济、抗	广播 电通 通 遥测
	调相PM	相位	鉴相或 相位检波	生变化 属于非线 性频率变 换	干扰性 强	数字通信

- ▶5. 鉴频: 频率解调
 - 鉴频跨导、鉴频灵敏度、频带宽度、寄生调幅抑制、失真和稳定性



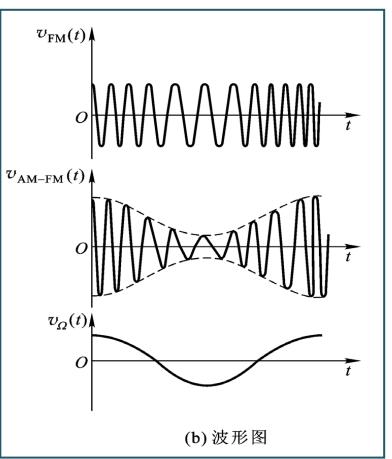


图 8.1.1 利用波形变换电路进行鉴频

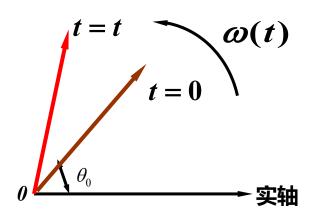
Chapter 8 角度调制与解调

- ☞ §8.1 概述
- ☞ §8.2 调角波的性质
- **☞ §8.3 调频方法概述**
- ☞ §8.4 变容二极管调频
- ☞ §8.5 晶体振荡器直接调频
- ☞ §8.6 间接调频:由调相实现调频
- **№ §8.7 可变延时调频**
- **☞ §8.8 相位鉴频器**
- ☞ §8.9 比例鉴频器
- ☞ §8.10 其他形式的鉴频器

▶1. 瞬时频率和瞬时相位

- **调频和调相都表现为高频振荡波的总瞬时相角受到调变**,故统称为角度调制(简称调角)。

瞬时频率
$$\omega(t) = \frac{\mathrm{d}}{\mathrm{d}t} \theta(t)$$
 瞬时相角
$$\theta(t) = \int_0^t \omega(t) \mathrm{d}t + \theta_0$$



瞬时相角θ(t)等于矢量 在 t 时间内转过的角度 与初始相角θ。之和

▶1. 瞬时频率和瞬时相位

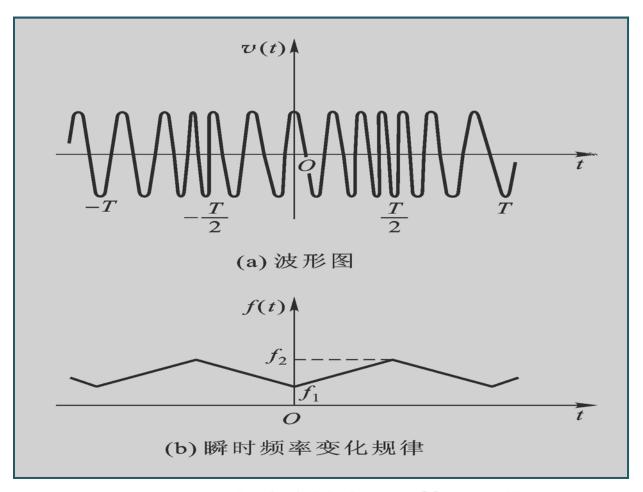


图 8.2.1 频率连续变化的简谐振荡

▶2. 调频波的数学表示

设: 调制信号: $v_{\Omega}(t)$ 载波信号: $a(t) = A_0 cos \theta(t)$

瞬时频率与调制信号呈线性关系,瞬时频率为:

$$\boldsymbol{\omega}(t) = \boldsymbol{\omega}_0 + k_f \boldsymbol{v}_{\Omega}(t)$$

 ω_0 是未调制时的载波中心频率;

 $k_{\rm f} v_{\Omega}$ (t)是瞬时频率相对于 ω_0 的偏移,叫瞬时频率偏移,简称频移。

$$\Delta\omega(t) = k_f v_{\Omega}(t)$$

 $\Delta\omega(t)$ 的最大频移称为频偏,记为: $\Delta\omega_m=k_f|v_\Omega(t)|_{max}$

$$\theta(t) = \int_0^t \left[\omega_0 + k_f v_{\Omega}(t)\right] dt$$

调频波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + k_f \int_0^t v_\Omega(t) dt]$$
 $(\theta_0 = 0)$

▶3. 调相波的数学表示

设: 调制信号: $v_{\Omega}(t)$ 载波信号: $a(t) = A_0 cos \theta(t)$

瞬时相位与调制信号呈线性关系,瞬时相位为:

$$\theta(t) = \omega_0 t + k_p v_{\Omega}(t)$$

瞬时相位偏移: $\Delta heta(t) = k_p v_{\Omega}(t)$

 $\Delta heta(t)$ 的最大值称为最大相移,称为调制指数,以 m_p 表示

调制指数: $m_p = k_p |v_\Omega(t)|_{max}$

调相波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + k_p v_{\Omega}(t)] \qquad (\theta_0 = 0)$$

>4. 调频波和调相波的比较

	FM波	PM波
数学表达式	$a(t) = A_0 cos[\omega_0 t + k_f \int_0^t v_{\Omega}(t) dt]$	$a(t) = A_0 cos[\omega_0 t + k_p v_{\Omega}(t)]$
瞬时频率	$\omega(t) = \omega_0 + k_f v_{\Omega}(t)$	$\omega_0 + k_{\mathbf{p}} \frac{\mathbf{d} \nu_{\Omega}(t)}{\mathbf{d} t}$
瞬时相位	$\theta(t) = \int_0^t \left[\omega_0 + k_f v_{\Omega}(t)\right] dt$	$\omega_0 t + K_{\mathbf{p}} v_{\Omega}(t)$
最大频偏	$\Delta\omega_m = k_f v_{\Omega}(t) _{max}$	$\Delta \omega_{\mathbf{m}} = K_{\mathbf{p}} \left \frac{\mathbf{d} \upsilon_{\Omega}(t)}{\mathbf{d} t} \right _{\text{max}}$
调制指数	$m_f = k_f \int_0^t v_{\Omega}(t) dt _{max}$	$m_{\mathbf{p}} = K_{\mathbf{p}} \big \upsilon_{\Omega}(t) \big _{\text{max}}$

附:上述比较中的调制信号 $oldsymbol{v}_{\Omega}(t)$,载波 $A_0\cos(\omega_0 t)$

▶5. 单音信号调频

设: 调制信号:
$$v_{\Omega}(t) = V_{\Omega} cos \Omega t$$
 载波信号: $a(t) = A_{0} cos \theta(t)$

瞬时频率为:
$$\omega(t) = \omega_0 + k_f V_{\Omega} cos \Omega t$$

瞬时相位为:
$$heta(t) = \omega_0 t + rac{k_f V_\Omega}{\Omega} sin\Omega t + heta_0$$

调频波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + \frac{k_f V_{\Omega}}{\Omega} sin\Omega t + \theta_0]$$

$$a(t) = A_0 cos[\omega_0 t + m_f sin\Omega t + \theta_0]$$

$$m_{\rm f} = \frac{k_{\rm f} V_{\Omega}}{\Omega} = \frac{\Delta \omega_{\rm f}}{\Omega}$$

▶6. 单音信号调相

设: 调制信号: $v_{\Omega}(t) = V_{\Omega} cos \Omega t$ 载波信号: $a(t) = A_{0} cos \theta(t)$

瞬时相位为: $\theta(t) = \omega_0 t + kpV_{\Omega} cos\Omega t + \theta_0$

瞬时频率为: $\omega(t) = \omega_0 - \Omega k_p V_{\Omega} sin\Omega t$

调相波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + k_p V_{\Omega} cos\Omega t + \theta_0]$$

$$a(t) = A_0 cos[\omega_0 t + m_p cos\Omega t + \theta_0]$$

$$m_{\rm p} = k_{\rm p} V_{\Omega} = \frac{\Delta \omega_{\rm p}}{\Omega}$$

▶单音信号调频过程的数学描述

设:调制信号:
$$v_{\Omega}(t) = V_{\Omega} cos \Omega t$$
 载波信号: $a(t) = A_{0} cos \theta(t)$

瞬时频率为:
$$\omega(t) = \omega_0 + k_f V_{\Omega} cos \Omega t$$

瞬时相位为:
$$\theta(t) = \omega_0 t + \frac{k_f V_{\Omega}}{\Omega} sin\Omega t + \theta_0$$
 (2分)

调频波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + \frac{k_f V_{\Omega}}{\Omega} sin\Omega t + \theta_0]$$
 (2 $\%$)

$$a(t) = A_0 \cos[\omega_0 t + m_f \sin\Omega t + \theta_0] \qquad (1\%)$$

▶单音信号调相过程的数学描述

设: 调制信号: $v_{\Omega}(t) = V_{\Omega} cos \Omega t$ 载波信号: $a(t) = A_0 cos \theta(t)$

瞬时相位为: $\theta(t) = \omega_0 t + kpV_{\Omega} cos\Omega t$ (2分)

瞬时频率为: $\omega(t) = \omega_0 - \Omega k_p V_{\Omega} \sin \Omega t$

调相波数学表达式:

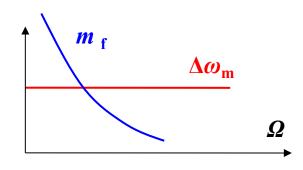
$$a(t) = A_0 \cos[\omega_0 t + k_p V_{\Omega} \cos\Omega t] \tag{2}$$

$$a(t) = A_0 \cos[\omega_0 t + m_p \cos\Omega t] \tag{14}$$

▶7. 调制指数与频宽

$$m_{\mathbf{f}} = \frac{k_{\mathbf{f}} V_{\Omega}}{\Omega} = \frac{\Delta \omega_{\mathbf{f}}}{\Omega}$$

$$\Delta \omega_f = k_f V_{\Omega}$$

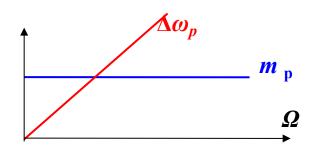


调相:

$$m_{\mathbf{p}} = k_{\mathbf{p}} V_{\Omega} = \frac{\Delta \omega_{\mathbf{p}}}{\Omega}$$

调相波频偏

$$\Delta \omega_p = k_p \Omega V_{\Omega}$$



由频偏表达式可以看出调相信号带宽随调制信号频率的升高而增加, 而调频波则不变,也把调频制叫做恒定带宽调制。

▶8. 调频波与调相波的频谱

调制信号
$$v(t) = V_{\Omega} \cos \Omega t$$

已调频信号

$$a(t) = V_0 \cos(\omega_0 t + m_f \sin \Omega t)$$

$$= V_0 [\cos \omega_0 t \cos(m_f \sin \Omega t) - \sin \omega_0 t \sin(m_f \sin \Omega t)]$$

$$= \text{Re}[V_0 e^{j\omega_0 t} e^{jm_f \sin \Omega t}]$$

其中

$$\cos(m_{\mathbf{f}}\sin\Omega t) = J_0(m_{\mathbf{f}}) + 2\sum_{n=1}^{\infty} J_{2\mathbf{n}}(m_{\mathbf{f}})\cos 2n\Omega t$$

$$\sin(m_{\mathbf{f}}\sin\Omega t) = 2\sum_{n=0}^{\infty} J_{2\mathbf{n}+1}(m_{\mathbf{f}})\sin(2n+1)\Omega t$$

▶8. 调频波与调相波的频谱

已调频信号
$$a(t) = V_0 \cos(\omega_0 t + m_{\mathbf{f}} \sin \Omega t) = \text{Re}[V_0 e^{j\omega_0 t} e^{jm_f \sin \Omega t}]$$

 $e^{jm_f \sin \Omega t}$ 是周期为 $2\pi/\Omega$ 的周期性时间函数,可以将它展开为傅氏级数,其基波角频率为 Ω ,即

$$e^{jm_f\sin\Omega t} = \sum_{n=-\infty}^{\infty} J_n(m_f)e^{jn\Omega t}$$

式中 $J_n(m_f)$ 是宗数为 m_f 的n阶第一类贝塞尔函数,它可以用无穷级数进行计算:

$$J_n(m_f) = \sum_{m=0}^{\infty} \frac{(-1)^n (\frac{m_f}{2})^{n+2m}}{m!(n+m)!}$$

$$J_n(m_f) = J_{-n}(m_f)$$
 n为偶数 $J_n(m_f) = -J_{-n}(m_f)$, n为奇数

▶8. 调频波与调相波的频谱

调制信号
$$v(t) = V_{\Omega} \cos \Omega t$$

已调频信号
$$a(t) = V_0 \cos(\omega_0 t + m_f \sin \Omega t)$$

$$a(t) = V_0 \operatorname{Re}\left[\sum_{n=-\infty}^{\infty} J_n(m_f) e^{j(\omega_0 t + n\Omega t)}\right]$$
$$= V_0 \sum_{n=-\infty}^{\infty} J_n(m_f) \cos(\omega_0 + n\Omega) t$$

$$a(t)=V_{\theta}\left[J_{\theta}(m_{f})\cos\omega_{\theta}t+J_{1}(m_{f})\cos(\omega_{\theta}+\Omega)t\right.$$
$$-J_{1}(m_{f})\cos(\omega_{\theta}-\Omega)t+J_{2}(m_{f})\cos(\omega_{\theta}+2\Omega)t$$
$$+J_{2}(m_{f})\cos(\omega_{\theta}-2\Omega)t+J_{3}(m_{f})\cos(\omega_{\theta}+3\Omega)t$$
$$-J_{3}(m_{f})\cos(\omega_{\theta}-3\Omega)t+...\right]$$

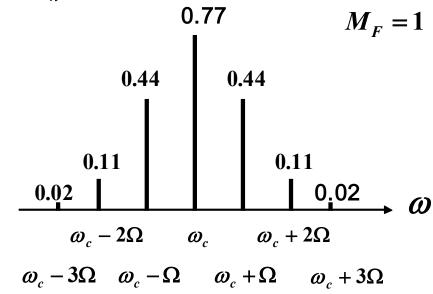
▶8. 调频波与调相波的频谱

$$v_{FM}(t) = \cos(\omega_0 t + M_F \sin \Omega t) = \sum_{n=-\infty}^{\infty} J_n(M_F) \cos(\omega_0 + n\Omega) t$$

■包含载波频率分量

其幅度小于1,与 调制指数有关

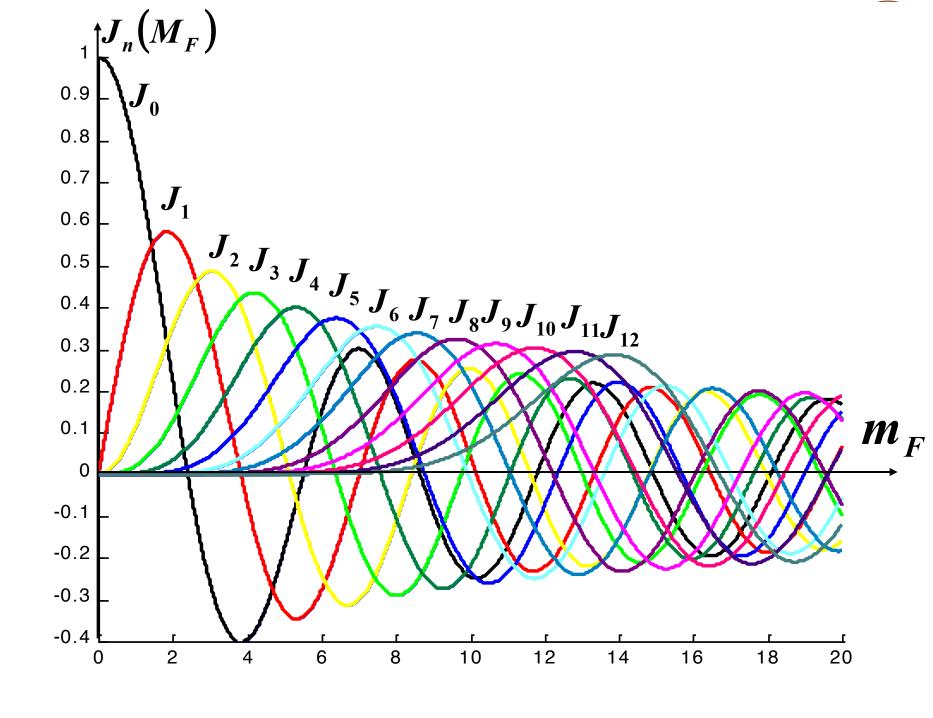
$$--- J_0(M_F)$$



M_F=1时调频波各频率分量分布及幅度

> 理论上包含无穷多个旁频分量

- 各旁频分量之间的距离是调制信号频率: Ω, F
- 各频率分量的幅度由贝塞尔函数决定: J_n(M_F)
- 奇次旁频分量的相位相反: J_{-(2k+1)}(M_F) = -J_(2k+1)(M_F)



	_						_	_	_						
m _F	Jo	J	J ₂	J ₃	J ₄	J ₅	J ₆	J ₇	J ₈	J ₉	J ₁₀	J ₁₁	J ₁₂	J ₁₃	J ₁₄
0.00	1														
0.25	0.98	0.12													
0.50	0.94	0.24	0.03												
1.00	0.77	0.44	0.11	0.02											
1.50	0.51	0.56	0.23	0.06	0.01										
2.00	0.22	0.58	0.35	0.13	0.03										
2.40	0.00	0.52	0.43	0.20	0.06	0.02									
2.50	05	0.50	0.45	0.22	0.07	0.02	0.01								
3.00	26	0.34	0.49	0.31	0.13	0.04	0.01								
4.00	40	07	0.36	0.43	0.28	0.13	0.05	0.02							
5.00	18	33	0.05	0.36	0.39	0.26	0.13	0.05	0.02						
5.45	0.00	34	12	0.26	0.40	0.32	0.19	0.09	0.03	0.01					
6.00	0.15	28	24	0.11	0.36	0.36	0.25	0.13	0.06	0.02					
7.00	0.30	0.00	30	17	0.16	0.35	0.34	0.23	0.13	0.06	0.02				
8.00	0.17	0.23	11	29	10	0.19	0.34	0.32	0.22	0.13	0.06	0.03			
8.65	0.00	0.27	0.06	24	23	0.03	0.26	0.34	0.28	0.18	0.10	0.05	0.02		
9.00	09	0.25	0.14	18	27	06	0.20	0.33	0.31	0.21	0.12	0.06	0.03	0.01	

0.22

0.32

0.29

0.21

0.12

0.06

0.03

0.01

10.0

-.25

0.05

0.25

0.06

-.22

-.23

-.01

▶8. 调频波与调相波的频谱

$$a(t)=V_{\theta}\left[J_{\theta}(m_{f})\cos\omega_{\theta}t+J_{1}(m_{f})\cos(\omega_{\theta}+\Omega)t\right.$$
$$-J_{1}(m_{f})\cos(\omega_{\theta}-\Omega)t+J_{2}(m_{f})\cos(\omega_{\theta}+2\Omega)t$$
$$+J_{2}(m_{f})\cos(\omega_{\theta}-2\Omega)t+J_{3}(m_{f})\cos(\omega_{\theta}+3\Omega)t$$
$$-J_{3}(m_{f})\cos(\omega_{\theta}-3\Omega)t+...\right]$$

通常规定:凡是振幅小于未调制载波振幅的1%(或10%,根据不同要求而定)的边频分量均可忽略不计,保留下来的频谱分量就确定了调频波的频带宽度。

如果将小于调制载波振幅10%的边频分量略去不计,则频谱宽度BW可由下列近似公式求出: ____________

$$BW = 2(m_{\mathbf{f}} + 1)F$$

 $egin{aligned} &m_{\mathbf{f}} < 1, \infty$ 为窄带调频, $B_{\mathbf{FM}} pprox 2F ($ 与AM波频带相同) $m_{\mathbf{f}} > 1, \infty$ 为宽带调频, $B_{\mathbf{FM}} = 2(m_{\mathbf{f}} + 1)F$ $m_{\mathbf{f}} > 10, B_{\mathbf{FM}} pprox 2m_{\mathbf{f}}F = 2\Delta f_{\mathbf{m}}(\Delta f_{\mathbf{m}})$ 最大频偏)

▶9. 多频信号调制的调频波频谱

$$a(t) = V_0 \left[\cos \omega_0 t \cos(\sum_{n=1}^N m_{\mathbf{f}n} \sin \Omega_{\mathbf{n}} t) - \sin \omega_0 t \sin(\sum_{n=1}^N m_{\mathbf{f}n} \sin \Omega_{\mathbf{n}} t)\right]$$

以双频信号为例

$$a(t) = V_0 \left[\cos \omega_0 t \cos(m_{\mathbf{f}1} \sin \Omega_1 t + m_{\mathbf{f}2} \sin \Omega_2 t) - \sin \omega_0 t \sin(m_{\mathbf{f}1} \sin \Omega_1 t + m_{\mathbf{f}2} \sin \Omega_2 t)\right]$$

$$\cos(m_{\mathbf{f}} \sin \Omega t) = J_0(m_{\mathbf{f}}) + 2\sum_{n=1}^{\infty} J_{2n}(m_{\mathbf{f}}) \cos 2n\Omega t$$

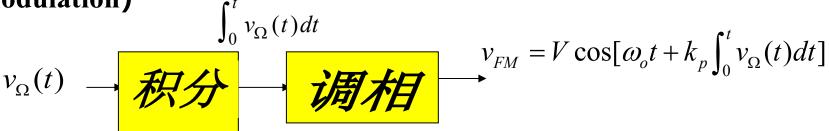
$$\sin(m_{\mathbf{f}} \sin \Omega t) = 2\sum_{n=0}^{\infty} J_{2n+1}(m_{\mathbf{f}}) \sin(2n+1)\Omega t$$

此时增加了许多组合频率,使频谱组成大为复杂。因此, 调频与调相制属于非线性调制。

▶10. 调频与调相的关系

(1)如果把 $v_{\Omega}(t)$ 先积分后,再经过调相器,也可得到对 $v_{\Omega}(t)$

而言的调频波,也称为间接调频。 (indirect frequency modulation) 。



(2) 把 $\nu_{\Omega}(t)$ 先微分后再调频,可以得间接调相 (indirect PM)

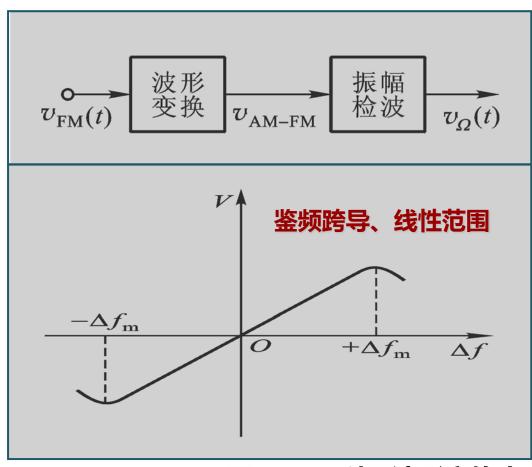


本章小结

1. 掌握**调频和调相的原理、基本概念**以及二者异同点,掌握调频 波**调制指数与带宽**的关系,理解贝塞尔函数分析频谱的方法, 掌握**调频和调相的关系**。

Thank You!

- ▶5. 鉴频: 频率解调
 - 鉴频跨导、鉴频灵敏度、频带宽度、寄生调幅抑制、失真和稳定性



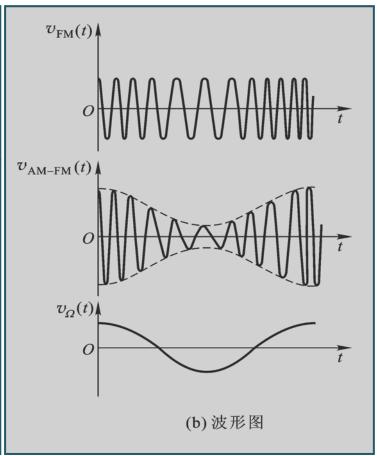


图 8.1.1 利用波形变换电路进行鉴频